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ABSTRACT

We introduce an adversarial planning algorithm based on
game tree search, which is applicable in large-scale multi-
player domains. In order to tackle the scalability issues of
game tree search, the algorithm utilizes procedural knowl-
edge capturing how individual players tend to achieve their
goals in the domain; the information is used to limit the
search only to the part of the game tree that is consistent
with pursuing players’ goals. We impose no specific require-
ments on the format of the procedural knowledge; any pro-
gramming language or agent specification paradigm can be
employed. We evaluate the algorithm both theoretically and
empirically, confirming that the proposed approach can lead
to a substantial search reduction with only a minor negative
impact on the quality of produced solutions.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Plan execution, formation, and gen-
eration; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Heuristic methods

General Terms

Algorithms

Keywords

Game Tree Search, Procedural Knowledge, Goals, Complex
domain, Artificial Intelligence, Experimental (Systems / Ar-
chitectures), Agents

1. INTRODUCTION
Recently, there has been a growing interest in studying

complex systems, in which larger numbers of agents con-
currently pursue their goals while engaging in complicated
patterns of mutual interaction. Examples include real-world
systems, such as various information and communication
networks or social networking applications, as well as simu-
lations, including models of societies, economies and/or war-
fare. Because in most such systems the agents are part of a
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single shared environment, situations arise in which their ac-
tions and strategies interact. Scenarios in which the outcome
of agent’s actions depends on actions chosen by others are
often termed games and have been an interest of AI research
from its very beginning. With the increasing complexity of
environments in which the agents1 interact, however, clas-
sical game playing algorithms, such as minimax search, be-
come unusable due to the huge branching factor, size of the
state space, continuous time and space, and other factors.

The solutions AI proposed to realize goal-oriented be-
haviour in such environments can generally be categorized
as declarative, which utilize formalization of goals and use
computationally expensive search-based planning, or proce-
dural, where the explicit knowledge how to achieve goals is
captured (typically as algorithms, plan templates, or prede-
fined plans) and agents only decide which goals should be
pursued (e.g. in most of BDI architectures).

We aim to combine both approaches within the context
of game playing. Specifically, we take standard adversarial
search (e.g. minimax, maxn) and extend it with the use of
procedural knowledge as a heuristic. In standard adversar-
ial search, all possible combinations of actions of all agents
are evaluated in the system to a certain extent (called look-
ahead), and the actions that lead to the best results for
individual agents within the scope of the limited look-ahead
are chosen to be executed. Conceptually, adversarial search
performs two separate tasks in parallel:

• single agent planning - finding sequences of actions
achieving some partial goals of individual agents

• interactions consideration - exploring how plans of
individual agents interact with each other (in negative
but possibly also positive way)

In our approach, we reduce the complexity of the first task
by employing background knowledge in the form of procedu-
ral knowledge and leave only the second task to the search.
In effect, only branches that support achieving some partial
goal are evaluated. This significantly reduces the searched
space yet keeps the interaction consideration at the detailed
level. This is essential because of the strong impact the inter-
action can have on the achievability of player goals and the
impossibility to model such impact sufficiently at a higher
level of abstraction.

In this paper, we focus primarily on the specification of
the employed procedural knowledge and its utilization in
game-tree search. We do not address uncertainty in the

1Often termed players in this context.
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game or models of opponents. The paper progress as fol-
lows. Section 2 describes the main components required for
the application of our approach. The core of the paper –
the algorithm for using procedural knowledge in game-tree
search is explained in Section 3. Section 4 analyzes computa-
tional complexity of the algorithm. Search space reduction,
precision loss and scalability of the algorithm are experimen-
tally examined in Section 5. Section 6 reviews related work
and the paper ends with conclusions and discussion of future
research.

2. PROBLEM DEFINITION
Many game-like situations appearing in real-world domains

(e.g. humanitarian relief operation) can be modelled as n-
player non-zero-sum games. Such games often have charac-
teristics that prohibit the application of standard game-tree
search algorithms (such as minimax). The main problems
in this regard are a huge branching factor, the need for long
sequences of atomic actions to achieve significant effects in
the game world, and simultaneous operation of all agents
involved.

Figure 1: The conceptual scheme of a game-playing
framework utilizing procedural background knowl-
edge in game-tree search.

We address these problems by employing procedural knowl-
edge. The resulting enhanced search technique can be ap-
plied as part of game-playing framework depicted in Fig-
ure 1. The player component represents the agent that ob-
serves the game world and performs actions to modify it.
For choosing its actions, the player uses the algorithm de-
scribed in Section 3. The background knowledge needed for
the algorithm can be divided into three subparts:

• Algorithms that produce atomic actions leading to
the fulfilment of their associated goal; such goals corre-
spond to basic objectives in the game (e.g. transport-
ing a single load of some commodity) and represent
elementary building blocks of players’ strategies.

• Conditions defining world states in which pursuing
the goals is meaningful (optionally, representing con-
ditions defining when individual players may choose to
pursue the goals).

• Evaluation function assigning to each player and
world state a numeric value representing desirability
of the game state for the player (e.g. utility of the
state for the player).

The overall background knowledge (i.e. each of its sub-
part) utilized in the search can also be split into a player-
independent part (also termed domain knowledge) and a
player-specific part (further termed opponent models). In
this paper, we have all the background knowledge fully pro-
vided by an expert, but all parts of background knowledge
can, in principle, be learned from behavior observations (see
Section 6).

3. GOAL-BASED GAME-TREE SEARCH
In this section, we present the Goal-based Game-tree Search

algorithm (denoted as GB-GTS) developed for game playing
in large-scale multi-player scenarios. It is based on maxn [5]
algorithm generalized to simultaneous moves and augmented
with procedural knowledge heuristic.

3.1 Domain
The domains supported by the algorithm can be formal-

ized as a tuple (P,U ,A,W, T ), where P is the set of players,
U =

⋃
p∈P Up is a set of units/resources capable of per-

forming actions in the world, each belonging to one of the
players. A = Xu∈U Au is a set of combinations of actions
the units can perform, W is the set of possible world states
and T : W ×A → W is the transition function realizing one
move of the game where the game world is changed via ac-
tions of all units and world’s own dynamics.

The game proceeds in moves. At the beginning of a move,
each player assigns actions to all units it controls (forming
the action of the player). Function T is subsequently invoked
(taking the combination of assigned actions as an input) to
modify the world state.

3.2 Simultaneous Moves
There are two ways simultaneous moves can be dealt with.

The first one is to directly work with joint actions of all
players in each move, compute their values and consider the
game matrix (normal form game) they entail. The actions
of individual players can then be chosen based on a game-
theoretical equilibrium (e.g. Nash equilibrium in [7]). The
second option is to fix the order of the players and let them
choose their actions separately in the same way as in maxn,
but using the unchanged world state from the end of the
previous move for all of them and with the action execu-
tion delayed until all players have chosen their actions. This
method is called delayed execution in [4]. In our experi-
ments, we have used the approach with fixed player order,
because of its easier implementation, allowing us to focus on
core issue of utilizing the background knowledge.

3.3 Goals
For our algorithm, we define a goal as a pair (Ig, Ag),

where Ig(W,U) is the initiation condition of the goal and
Ag is an algorithm that, depending on its internal state and
the current state of the world, deterministically outputs the
next action that leads to fulfilling the goal.

A goal can be assigned to one unit and it is then pur-
sued until it is successfully reached or dropped because its
pursuit is no longer practical. Note that we do not specify
any dropping or succeeding condition, as they are implic-
itly captured in the Ag algorithm. We allow the goal to be
abandoned only if Ag is finished; furthermore, each unit can
pursue only one goal at a time. There are no restrictions
on the form of algorithm Ag, so it can represent any type of
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Input: W ∈ W: current world state, d: search depth,
G[U ]: map from units to goals they pursue

Output: an array of values of the world state (one
value for each player)

curW = W1

while all units have goals in G do2

Actions = ∅3

foreach goal g in G do4

Actions = Actions ∪ NextAction(Ag)5

if Ag is finished then6

remove g from G7

end8

end9

curW = T (curW ,Actions)10

d = d − 111

if d=0 then12

return Evaluate(curW)13

end14

end15

u = GetFirstUnitWithoutGoal(G)16

foreach goal g with satisfied Ig(curW, u) do17

G[u] = g18

V [g] = GBSearch(curW, d,Copy(G))19

end20

g = arg maxg V [g][Owner(u)]21

return V [g]22

Figure 2: GBSearch(W , d, G) – the main procedure
of GB-GTS algorithm.

goal (e.g. maintain, achieve) and any kind of architecture
(e.g. BDI, HTN) can be used to describe it.

The goals in GB-GTS serve as building blocks for more
complex strategies that are created by combining different
goals for different units and then explored via search. This
contrasts with HTN-based approaches used for guiding the
game tree search (see Section 6), where the whole strategies
are encoded using decompositions from the highest levels of
abstraction to the lower ones.

3.4 Algorithm Description
The main procedure of the algorithm (outlined in Figure 2

as procedure GBSearch()) recursively computes the value of
a state for each of the players assuming that all the units
will rationally optimize the utility of the players control-
ling them. The inputs to the procedure are the world state
for which the value is to be computed, the depth to which
to search from the world state and the goals the units are
currently pursuing. The last parameter is empty when the
function is called for the first time.

The algorithm is composed of two parts. The first is the
simulation of the world changes based on the world dynamics
and the goals that are assigned and pursued by the units,
and the second is branching on all possible goals that a unit
can pursue after it is finished with its previous goal.

The first part – simulation – consists of lines 1 to 15. If
all units have a goal they actively pursue, the activity in
the world is simulated without any need for branching. The
simulation runs in moves and lines 3-10 describe the sim-
ulation of a single move. At first, for each unit, an action
is generated based on the goal g assigned to this unit (line

5). If the goal-related algorithm Ag has finished, the goal is
removed from the map of goals (lines 6-8) and the unit that
was previously assigned to this goal becomes idle. The gen-
erated actions are then executed and the conflicting changes
of the world are resolved in accordance with the game rules
(line 10). After this step, one move of the simulation is fin-
ished. If the simulation has reached the required depth of
search, the resulting state of the world is evaluated using
the evaluation functions of all players (line 13).

The second part of the algorithm – branching – starts
when the simulation reaches the point where at least one
unit has finished pursuing its goal (lines 16-22). In order
to ensure fixed order of players (see Section 3.2), the next
processed unit is chosen from the idle units based on the
ordering of the players that control the units (line 16). In
the run of the algorithm, all idle units of one player are con-
sidered before moving to the units of the next one. The rest
of the procedure deals with the selected unit. For this unit,
the algorithm sequentially assigns each of the goals that are
applicable for the unit in the current situation. The applica-
bility is given by the goal’s Ig condition. For each applicable
goal, the algorithm assigns the goal to the unit and evalu-
ates the value of the assignment by recursively calling the
whole GBSearch() procedure (line 19). The current goals of
the units are cloned because the state of the already started
algorithms generating actions from goals for the rest of the
units (Ag) must be the same for all the considered goals of
the selected unit. After computing the value of each goal
assignment, the one that maximizes the utility of the owner
of the unit is chosen (line 21) and the values of this decision
for all players are returned by the procedure.

3.5 Game Playing
The pseudo-code on Figure 2 shows only the computation

of the values of the decisions; it does not deal with how
the algorithm can be employed by a player to determine
its next actions in the game. In order to do so, the player
needs to extract a set of goals for its units from the searched
game tree. Each node in the search procedure execution
tree is associated with a unit – the unit for which the goals
are tried out. During the run of the algorithm, we store
the maximizing goal choices from the top of the search tree
representing the first move of the game. The stored goals for
each idle unit of the searching player are the main output of
the search.

In general, there are two ways the proposed goal-based
search algorithm can be used in game-playing.

In the first approach, the algorithm in started in each
move and with all units in the simulation set to idle. The
resulting goals are extracted and the first actions generated
for each of the goals are played in the game. Such an eager
approach is better for coping with unexpected events should
also be more robust in case the background knowledge does
not exactly describe the activities in the game.

In the second approach the player using the algorithm
maintains a list of current goals for all units it controls. If
none of its units is idle (i.e. has no goal assigned), the player
uses the goals to generate next actions for its units. Oth-
erwise, the search algorithm is started with goals for the
player’s non-idle units pre-set and all the other units idle.
The goals generated for the previously idle are assigned and
pursued in following moves. This lazy approach is signifi-
cantly less computationally intensive.
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3.6 Opponent Models
In Section 2 we introduced a player-specific part of back-

ground knowledge, termed opponent models. There are two
types of opponent models in our approach. We now describe
how they can be utilized in the algorithm. The first type,
the evaluation function capturing preferences of each player
is already an essential part of the maxn algorithm.

The other type of the opponent model can be used to re-
duce the set of all applicable goals (iterated in Figure 2 on
lines 18-21) to the goals a particular player is likely to pur-
sue. This can be done by adding player-specific constrains
to conditions Ig defining when the respective goal is appli-
cable. These constrains can be hand-coded by an expert or
learned from experience; we call them goal-restricting oppo-
nent models.

The role of goal-restricting opponent model can be illus-
trated on a simple example of the goal representing loading
a commodity to a truck. The domain restriction Ig could
be that the truck must not be full. The additional player-
specific constraint could be that the commodity must be
produced locally at the location, because the particular op-
ponent never uses temporary storage locations for the com-
modity and always transports it from the place where it is
produced to the place where it is consumed.

Using a suitable goal-restricting opponent model can fur-
ther reduce the size of the space that needs to be searched
by the algorithm. A similar way of pruning is possible also
in adversarial search without goals. We believe, however,
that determining which goal a player will pursue in a given
situation is more intuitive and easier to learn than to deter-
mine which low-level atomic action (e.g. going right or left
on a crossroad) a player will execute.

4. TREE SIZE ESTIMATION
Before embarking on empirical evaluation of the proposed

algorithm, we provide several elementary estimates of the
algorithm’s time complexity. Because the amount of com-
putation time required is linearly proportional to the size of
the search tree, we want to estimate the number of inner
nodes evaluated during the search.

In estimating the size of the search tree, we need to take
several factors into consideration:

• branching factor – the number of goals a unit can start
pursuing at a time

• length of goal execution – the number of atomic actions
that are executed to complete a specific goal

• look-ahead – the length of atomic action sequences
considered in the search (i.e. the depth of the tree)

In actual execution of the GB-GTS algorithm, the above
factors vary during the search (e.g. the branching factor
is not constant and the number of current goals for a unit
can change in time – e.g. for a transport unit, there can be
only one city for loading a commodity, but several for its
unloading). Such variability complicates the calculation of
the size of the tree; in our approximation, we therefore make
the following simplifying assumptions:

• the number of goals a particular unit can pursue is the
same at all decision points (it can differ for different
units)

• all goals of a particular unit take the same number of
atomic actions to complete (again, this value can differ
for different units)

Fixing the branching factor and goal execution length con-
stant makes the execution of a unit’s plan independent from
actions performed by other units – the number of atomic
actions for a goal is fixed and the unit will always select its
goal from the set of the same size. Each different branch in
the tree can thus be represented as a list of different choices
made by all units until the given number of atomic actions
(look-ahead) is reached. We can then estimate the number
of different branches, i.e., the number of the leaves of the
tree that is constructed under these assumptions.

Let d be the look-ahead, let N be the number of units, and
i = 1, . . . , N be the index of the unit. Let bi be the branching
factor for the unit, let li be the number of atomic actions
needed to accomplish each goal of unit i. We can calculate
the number of possible different traces as a product of the
number of different choices how to reach the look-ahead for
each unit:

#leaves =

N∏
i=1

(
(bi)

� d
li

�)
(1)

To approximate the size of the game tree, however, the
number of the leaves is not sufficient (e.g. there can be
units capable of pursuing a single goal only; such units do
not produce any branching inside the tree). In order to
obtain an approximation of the number of all the nodes, we
further assume that all units have the same branching factor
equal to a weighted average of branching factors of all units,
where the weights are the inverted average lengths of each
unit’s goals:

β =

∑N
i=1

bi
li∑N

i=1
1
li

(2)

For the number of nodes we now obtain

#nodes =

�logβ#leaves�∑
i=0

βi (3)

In the next section, we will show that despite the simplifying
assumptions, the estimate obtained is in good agreement
with empirical measurements. Besides allowing assessing the
applicability of GB-GTS in specific domains, the analytic
estimate can be used by the game-playing algorithm itself to
dynamically adjust the look-ahead so that time constraints
on finding a solution are met.

5. EXPERIMENTS
In order to practically examine the proposed goal-based

(GB) adversarial search algorithm, we performed several ex-
periments. Firstly, we compare it to the exhaustive search
of the complete game tree performed by the simultaneous-
move modification of maxn search (further called action-
based (AB) search) in order to assess the ability to reduce
the volume of search on one hand and to maintain the qual-
ity of resulting strategies on the other. Afterwards, we an-
alyze the scalability of the GB algorithm in more complex
scenarios.

Note that we use the eager, computationally more inten-
sive version of the game playing algorithm in the experi-



Viliam Lisý, Branislav Bošanský, Michal Jakob, Michal Pĕchouček • Adversarial Search with Procedural Knowledge Heuristic

903

Figure 3: A schema of the simple scenario. Black
vertices represent cities that can be controlled by
players, grey vertices represent cities that cannot be
controlled, and white vertices do not contain cities.

ments (see Section 3.5), in which all units are choosing their
goals at the same moment in each move.

5.1 Example Game
The game we use as a test case is modelled after a hu-

manitarian relief operation in an unstable environment, with
three players - government, humanitarian organization, and
separatists. Each of the players controls a number of units
with different capabilities that are placed in the game world
represented by a graph. Any number of units can be lo-
cated in each vertex of the graph and change its position to
an adjacent vertex in one game move. Some of the vertices
of the graph contain cities, which can take in commodities
the players use to construct buildings and produce other
commodities.

The utilities (evaluation functions) representing the main
objectives of the players are expressed as weighted sums of
components, such as the number of cities with sufficient food
supply, or the number of cities under the control of the gov-
ernment. The government control is derived from the state
of the infrastructure, the difference between the number of
units of individual players in the city and the state of the
control of the city in the previous move. Detailed description
of the game can be found in [8].

Simple Scenario.
In order to run the standard AB algorithm on a game of

this complexity, the scenario has to be scaled down to a quite
simple problem. We have created a simplified scenario as a
subset of our game with the following main characteristics
(see also the scheme in Figure 3):

• only two cities can be controlled (Vertices 3 and 6)

• a government’s HQ is built in Vertex 3

• two “main” units - police (cop) and gangster (gng) are
placed in Vertex 3

• a truck is transporting explosives from Vertex 5 to Ver-
tex 7

• another two trucks are transporting food from Vertex 1
to the city with food shortage Vertex 3

There are several possible runs of this scenario. The police
unit has to protect several possible threats. In order to make
government to lose control in Vertex 3, the gangster can
either destroy food from a truck to cause starving resulting
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Figure 4: The search space reduction of the GB al-
gorithm compared to the AB algorithm. An average
number of the search tree nodes explored depending
on the search depth is shown for both algorithms in
a logarithmic scale.

in lowering the well-being and consequent destroying of the
HQ (by riots), or it can steal explosives and build a suicide
bomber that will destroy the HQ without reducing wellbeing
in the city. Finally, it can also try to gain control in city in
Vertex 6 just by outnumbering the police there. In order to
explore all these options, the search depth necessary is six
moves.

Even such a small scenario creates a game tree too big
for the AB algorithm. Five units with around four appli-
cable actions each (depending on the state of the world)
considered in six consequent moves results in (45)6 ≈ 1018

world states to examine. Hence, we further simplify it for
the AB algorithm. Only the actions of two units (cop and
gng) are actually explored in the AB search and the actions
of the trucks are considered to be a part of the environ-
ment (i.e. the trucks are scripted to act rationally in this
scenario). Note that the GB algorithm does not need this
simplification and actions of all units are explored in the GB
algorithm.

The goals, used in the algorithm, are generated by instan-
tiation of fifteen goal types. Each goal type is represented as
a Java class. Only four of the fifteen classes are unique and
the rest nine classes are derived from four generic classes in
a very simple way. The actions leading towards achieving
a goal consist typically of pathfinding to a specific vertex,
waiting for a condition to hold, performing a specific action
(e.g. loading/unloading commodities), or their concatena-
tion.

5.2 Search Reduction
Using this simplified scenario, we first analyze how the

main objective of the algorithm – search space reduction –
is satisfied.

We run the GB and AB algorithms on a fixed set of 450
problems – world states samples extracted from 30 different
traces of the game. On each configuration, we experiment
with different values of the look-ahead parameter (1-6 for
the AB algorithm and 1-19 for the GB algorithm). As we
can see in Figure 4, the experimental results fulfilled our aim
of substantial reduction of the search space. The number of
nodes explored increases exponentially with the depth of the
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search. However, the base of the exponential is much lower
for the GB algorithm. The size of the AB tree for six moves
look-ahead is over 27 million, while GB search with the same
look-ahead explores only 385 nodes and even for the look-
ahead of nineteen, the size of the tree was in average less
than 5 × 106. These numbers indicate that using heuristic
background knowledge can reduce the time needed to choose
an action in the game from tens of minutes to a fraction of
a second.

Our implementations of each of the algorithms processed
approximately twenty five thousands nodes per second on
our test hardware without any optimization techniques. Ac-
cording to [1], however, game trees with million nodes can
be searched in real-time (about one second) when such op-
timization is applied and when efficient data structures are
used.

5.3 Loss of Accuracy
With such substantial reduction of the set of possible

courses of action explored in the game, some loss of quality
of game-playing can be expected. Using the simplified sce-
nario, we compared the actions resulting from the AB and
the first action generated by the goal resulting from the GB
algorithm. The action differed in 47% of cases. However,
a different action does not necessarily mean that the GB
search has found a sub-optimal move. Two different actions
often have the same value in AB search. Because of the pos-
sibly different order in which actions are considered, the GB
algorithm can output an action which is different from the
AB output yet still has the same optimal value. The values
of actions referred to in the next paragraph all come from
the AB algorithm.

The value of the action resulting from the GB algorithm
was in 88.1% of cases exactly the same as the “optimal”
value resulting from AB algorithm. If the action chosen by
GB algorithm was different, it was still often close to the
optimal value. We were measuring the difference between
the values of GB and optimal actions, relative to the differ-
ence between the maximal and the minimal value resulting
from the searching player’s decisions in the first move in the
AB search. The mean relative loss of the GB algorithm was
9.4% of the range. In some cases, the GB algorithm has
chosen the action with minimal value, but it was only in sit-
uations, where the absolute difference between the utilities
of the options was small.

5.4 Comparison with Theoretical Estimates
We now compare the theoretical estimates obtained in

Section 4 with the real values. We analyzed and calculated
the average branching factors and the average lengths of
plans of all units in the simple scenario in order to feed
them in the formula (3). We then compared the obtained
estimation of the number of nodes of the evaluated trees
with the average number of nodes of the tree from several
runs of GB-GTS search for different look-ahead. The results
are shown in Figure 5. We can see that even with the sim-
plifications made we obtain fairly accurate estimates of the
number of the nodes of the tree.

5.5 Scalability
Previous sections show that the GB algorithm can be

much faster than and almost as accurate as the AB algo-
rithm with suitable goals. We continue with assessing the
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Figure 5: The estimation of the number of evaluated
nodes during the search compared to experimental
measurments

limits on the complexity of the scenario where GB algo-
rithm is still usable. There are several possible expansions
of the simple scenario. We explore the most relevant factor
– number of units – separately and then we apply the GB
algorithm on a bigger scenario. In all experiments, we ran
the GB algorithm in the initial position of the extended sim-
ple scenario and we measured the size of the searched part
of the game tree.

5.5.1 Adding Units
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Figure 6: Increase of the size of the searched tree
when adding one to ten police units and explosives
trucks to the simple scenario with a 6 move look-
ahead.

The increase of the size of the searched tree naturally de-
pends on the average number of goals applicable for a unit
when it becomes idle and the lengths of the plans that lead
to their fulfilment. The explosives truck has usually only a
couple of applicable goals. If it is empty, the goal is to load
in one of the few cities where explosives are produced and
if it is full, the goal is to unload somewhere where explo-
sives can be consumed. On the other hand, a police unit
has many possible goals. It can protect any transport from
being robbed or it can try to outnumber the separatists in
any city. We were adding these two unit types to the simple
scenario and computed the size of the search tree with fixed



Viliam Lisý, Branislav Bošanský, Michal Jakob, Michal Pĕchouček • Adversarial Search with Procedural Knowledge Heuristic

905

six moves look-ahead.
When adding one to ten explosives trucks to the simple

scenario, each of them has always only one goal to pursue
at any moment. Due to our GB algorithm definition, where
goals for each unit are evaluated in different search tree node,
even adding a unit with only one possible goal increases the
number of evaluated nodes slightly. In Figure 6 are the
results for this experiment depicted as circles. The number
of the evaluated nodes increases only linearly with increasing
the number of the trucks.

Adding further police units with four goals each to the
simple scenario increased the tree size exponentially. The
results for this experiment are shown in Figure 6 as pluses.

5.5.2 Complex Scenario
In order to test the usability of the GB search in a more

realistic setting, we implemented a larger scenario within our
test domain. We used a graph with 2574 vertices and two
sets of units. The first unit set was composed of nine units,
including two police units with up to four possible goals in
one moment, two gangster units with up to four possible
goals, an engineer with three goals, stone truck with up to
two goals and three trucks with only one commodity source
and one meaningful destination resulting to one goal at any
moment. The second unit set included seven units – one
police, one gangster unit and the same amount of units of
the other types. The lengths of the plans to reach these
goals is approximately seven atomic actions. There are five
cities, where the game is played.

A major difference of this scenario to the simple scenario
is, besides the added units, a much bigger game location
graph and hence higher length of the routes between cities.
As a result, all plans of the units that need to arrive to
a city and perform some actions there are proportionally
prolonged. This is not a problem for the GB algorithm,
because the move actions along the route are only simulated
in the simulation phase and do not cause any branching.

In a simple experiment to prove this, we changed the time
scale of the simulation, so that all the actions were split
to two sub-actions collectively effecting the same change of
the game world. After this modification, the GB algorithm
explored exactly the same number of nodes and the time
needed for the computation increased linearly, correspond-
ing to more simulation steps needed.
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Figure 7: Size of the trees searched by the GB algo-
rithm in the complex scenario.

If we assume that an optimized version of the algorithm
can compute one million nodes in a reasonable time, then the
look-ahead we can use in the complex scenario is 10 in the
nine-unit case and 18 in the seven-unit case. Both values
are higher than the average length of unit’s typical plan,
allowing it to find meaningful plans. If we wanted to apply
the AB algorithm to the seven-unit case with the look-ahead
of eighteen, considering only four possible move directions
and waiting for each unit, it would mean searching through

approximately 4718 ≈ 1075 nodes of the game tree, clearly
an impossible task.

6. RELATED WORK
In this section, we review work on two related areas. The

first concerns other ways of using background knowledge
heuristic in game-tree search; the other concerns obtaining
the background knowledge required by our algorithm.

Knowledge Heuristic in Adversarial Search.
Existing work on using knowledge heuristic in adversarial

search is surprisingly scarce. The most closely related work
is probably the chess-playing system Paradise [11]. The sys-
tem uses a learned set of rules that can match various situ-
ations on the chessboard. The satisfied rules generate only
a small number of actions that need to be explored in each
situation. Our approach is more general – it can use arbi-
trary algorithms for the description of goals, more complex
game environments; the progress in hardware also allowed
experiments of different magnitudes.

More recent work in this area is [9]. The authors used
HTN formalism to define the set of runs of the game, which
are consistent with some predefined hand-coded strategies.
However, the approach is designed for the Bridge domain,
which allows searching through the complete game tree de-
fined by the strategies; the approach uses domain-specific
abstractions of the information about the opponents instead
of searching the game action-by-action. Searching trough
whole strategies for more complex domains would hardly be
tractable and describing them would be much harder then
describing just the subgoals needed in our approach.

A plan library represented as HTN is used to play GO
in [12]. The searching player simulates HTN planning for
both the players, without considering what the other one is
trying to achieve. If one player achieves its goal, the oppo-
nent backtracks (the shared state of the world is returned
to the previous state) and tries a different decomposition.
A notable property of this approach is that it does not use
an explicit evaluation function and hence it is usable only in
zero-sum games.

Another approach for reducing the portion of the tree that
is searched for scenarios with multiple units is introduced in
[6]. The authors show successful experiments with searching
for one unit at a time only, while simulating the movement
of the other units using a rule-based heuristic.

Obtaining Background Knowledge.
The background knowledge is often difficult and expen-

sive to obtain. It can generally be hand-coded by an expert,
learned, or something in between. We present a short re-
view of this options that support usability of the proposed
algorithm.

The evaluation functions represent the basic desires of the
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players and they can often be easily expressed by an expert.
However, in case that the opponent is completely unknown,
methods form classical game tree search, such as [2], should
be considered. The paper presents learning opponent eval-
uation function together with the look-ahead that explains
the opponent moves best. It assumes that the opponent
is using minimax algorithm and that its evaluation func-
tion is a weighted sum of world state characteristics known
in advance and it performs hill-climbing in the space of the
weights and depths to find the combination that explains the
training set of opponent decisions best. A similar approach
could be usable also in non-zero-sum case of multiple play-
ers, but the number of parameters in the search is multiplied
by the number of players. Presence of the a priory known
procedural knowledge heuristic would not change anything
in the approach.

The procedural knowledge in form of general algorithms
that produce actions that lead to fulfilment of subgoals are
the most complex part of the background knowledge needed
for our algorithm. It can be learned by completely unsuper-
vised methods, or use some information from an expert and
derive the rest form observation [10]. Learning agent be-
haviour from observations is most relevant in context of our
work especially for capturing the information about the op-
ponents. In [3], the authors present a system, that use ILP
to clone behaviour of an expert. A part of their system is
learning the algorithm for generating actions leading to ful-
filling of subgoals as well as the initiation conditions. They
prove its efficiency in complex domains with other agents
involved so it is likely that the approach would be usable in
our setting.

7. CONCLUSIONS
We proposed a novel algorithm that extends a multi-player

simultaneous-move game-tree search with a heuristic based
on procedural knowledge. As indicated by both the theoret-
ical and empirical evaluation of the algorithm’s complexity,
the approach is particularly useful in domains where long
sequences of actions lead to significant changes in the world
state, each of the units (or other resources) can only pursue
a few goals at any time, and the decomposition of a each
goal to low level actions is uniquely defined (e.g. using the
shortest path to move between locations).

In experiments, we have compared the performance of the
algorithm to a slightly modified exhaustive maxn search,
showing that despite examining only a small fraction of the
game tree (less than 0.002% for the look-ahead of six game
moves), the goal-based search is still able to find an optimal
solution in 88.1% cases; furthermore, even the suboptimal
solutions produced are often close to the optimum. This
results have been obtained with the background knowledge
designed before implementing and evaluating the algorithm
and without further optimization to prevent over-fitting.

Furthermore, we have tested the scalability of the algo-
rithm to larger scenarios where the modified maxn search
cannot be applied at all. We have confirmed that although
the algorithm’s time complexity cannot escape exponential
growth, this growth can be controlled by reducing the num-
ber of different goals considered for each unit and by making
the action sequences generated by goals longer. Simulations
on a real-world scenario modelled as a multi-player asym-
metric game proved the approach viable, though further op-
timizations would be necessary for the algorithm to discover

more complex strategies.
Besides the significant space reduction, another important

advantage of the proposed approach is that no restrictions
for algorithms representing goals in the background knowl-
edge are needed. This fact opens a possibility to reuse knowl-
edge already captured in other formalisms (HTN, BDI, etc.)
also in the GB-GTS algorithm.
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